Multiharmonic finite element analysis of a time-periodic parabolic optimal control problem

نویسندگان

  • Ulrich Langer
  • Monika Wolfmayr
چکیده

This paper presents the multiharmonic analysis of a distributed parabolic optimal control problem in a time-periodic setting. We prove the existence and uniqueness of the solution of some weak space-time variational formulation for the parabolic time-periodic boundary value problem appearing in the constraints for the optimal control problem. Since the cost functional is quadratic, the optimal control problem is uniquely solvable as well. In order to solve the optimal control problem, we state its optimality system and discretize it by the multiharmonic finite element method leading to a system of linear algebraic equations which decouples into smaller systems. We construct preconditioners for these systems which yield robust convergence rates and optimal complexity for the preconditioned minimal residual method. All systems can be solved totally in parallel. Furthermore, we present a complete analysis for the error introduced by the multiharmonic finite element discretization as well as some numerical results confirming our theoretical findings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional a Posteriori Error Estimates for Time - Periodic Parabolic Optimal Control Problems

This work is devoted to the functional a posteriori error analysis of multiharmonic finite element approximations to some distributed time-periodic parabolic optimal control problems. We derive easily computable, guaranteed upper bounds for both the state and co-state errors and the cost functional.

متن کامل

JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics A Finite Element Solver for a Multiharmonic Parabolic Optimal Control Problem

This paper presents the analysis of a distributed parabolic optimal control problem in a multiharmonic setting. In particular, the desired state is assumed to be multiharmonic. After eliminating the control from the optimality system, we arrive at the reduced optimality system for the state and the co-state that is nothing but a coupled system of a forward and a backward parabolic partial diffe...

متن کامل

Functional A Posteriori Error Estimates for Parabolic Time-Periodic Boundary Value Problems

The paper is concerned with parabolic time-periodic boundary value problems which are of theoretical interest and arise in different practical applications. The multiharmonic finite element method is well adapted to this class of parabolic problems. We study properties of multiharmonic approximations and derive guaranteed and fully computable bounds of approximation errors. For this purpose, we...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A preconditioned MinRes solver for time-periodic parabolic optimal control problems

This work is devoted to the multiharmonic analysis of parabolic optimal control problems in a time-periodic setting. In contrast to previous approaches, we include the cases of different control and observation domains, the observation in certain energy spaces and the presence of control constraints. In all these cases we propose a new preconditioned MinRes solver for the frequency domain equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Num. Math.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2013